Peroxide-Forming Chemicals

Certain chemicals can form dangerous peroxides upon exposure to air and light. Peroxides may **detonate with extreme violence** when concentrated by evaporation or distillation, when combined with other compounds, or when disturbed by unusual heat, shock or friction. Formation of peroxides is accelerated in opened and partially emptied containers.

MAY DETONATE WITH EXTREME VIOLENCE

TABLE A

Peroxidizable Classification	Dispose or Test After*‡
Unopened from Manufacturer	18 months
Opened Containers	
List A (in situ)	3 months
List B (upor concentration)	12 Months
List C uninhibited (autopolymerizes)	24 hours
inhibitec (autopolymerizes)	12 months**
List D (other)	12 months

* Never open or test containers of unknown origin or age, or those that have evidence of peroxide formation

‡ Unless otherwise specified on the original container

**Do not store under inert atmosphere

LABEL

Peroxide Testing

- Peroxide forming chemicals should be used or disposed of prior to the expiration date. If extenuating circumstances exist for keeping the chemical, routine testing is necessary.
- Visually inspect containers for crystal formation or cloudiness before opening. If either of these conditions are observed, **DO NOT OPEN** and **ALERT ERM**
- Test strips are available from ERM.
- Any chemical that tests greater than 100ppm should be labeled as containing peroxides; please contact ERM for disposal assistance.
- All test results should be recorded directly on the container.
- Refer to **TABLE A** for testing or disposal frequency.

List A – form peroxides without concentration by evaporation or distillation					
Butadiene	Divinylacetylene	Tetrafluoroethylene			
Chloroprene	Isopropyl ether	Vinylidene Chloride			

 $\mbox{List } {\bf B}$ – form explosive levels of peroxides upon concentration by evaporation or distillation

Acetal	Diethyl Ether	4-methyl-2-pentanol
Acetaldehyde	Diglyme	2-Pentanol
Benzyl Alcohol	Dioxanes	4-Pentene-1-ol
2-Butanol	Glyme	1-Phenylethanol
Cylcohexanol	4-Hepitanol	2-Phenylethanol
2-Cyclohexen-1-ol	2-Hexanol	2-Propanol
Cyclohexene	Methyl Acetylene	Tetrahydrofuran
Decahydronaphthalene	3-Methyl-1-butanol	Tetrahydronaphthalene
Diacetylene	Methylcyclopentane	Vinyl Ethers
Dicyclopentadiene	Methyl Isobutyl Ketone	Other Secondary Alcohols

List C – autopolymerize as a result of peroxide accumulation

Acrylic AcidMethyl Methacrylate2012AcrylonitrileStyreneButadieneTetrafluorethyleneChloropreneVinyl AcetateChlorotrifluoroethyleneVinyl Acetate

PEROAIDE FORMING CHEMICAL					
DateReceived _10/	16/2012	Date Opened	10/26/2012		
Date/Test Results	1/26/20)13 - 25ppm			
Date/Test Results	4/26/20)13 - 46ppm			
Date/Test Results					
Date/Test Results					
Date/Test Results					
Date/Test Results					

hacrylate Vinyla Vinyl (hylene Vinylp e Vinylp

Vinylacetylene Vinyl Chloride Vinylpyridine Vinylidene Chloride

List D – do not fall into the above categories, but require special handling nonetheless. Common chemicals are listed below. Contact ERM for a more extensive list.

Acrolein Ethyl Vinyl Ether Furan Limonene

SUU SOUTHERN UTAH UNIVERSITY Southern Utah University

Enterprise Risk Management

385 S. 1275 W. Cedar City. UT 84720 435-704-1215 humes@suu.edu